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A parametrization for silicon is presented that is based on the second-generation reactive empirical bond-
order �REBO� formalism �Brenner, Shenderova, Harrison, Stuart, Ni, and Sinnott J. Phys.: Condens. Matter
14, 783 �2002��. Because it shares the same analytic form as Brenner’s second-generation REBO, this new
potential is a step toward a single potential that can model many atom systems that contain C, Si, and H, where
bond breaking and bond making are important. The widespread use of Brenner’s REBO potential, its ability to
model both zero-Kelvin elastic constants of diamond and the temperature dependence of the elastic constants,
and the existence of parameters for many atom types were the motivating factors for obtaining this parametri-
zation for Si. While Si-C-H classical bond-order potentials do exist, they are based on Brenner’s original
formalism. This new parametrization is validated by examining the structure and stability of a large number of
crystalline silicon structures, by examining the relaxation energies of point defects, the energies of silicon
surfaces, the effects of adatoms on surface energies, and the structures of both liquid silicon and amorphous
silicon. Finally, the elastic constants of diamond-cubic and amorphous silicon between 0 and 1100 K are
calculated with this new parametrization and compared to values calculated using a previously published
potential.
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I. INTRODUCTION

Because silicon has such a great technological impor-
tance, there have been many attempts to construct empirical
potential energy functions to model its behavior. These po-
tentials include, but are not limited to, the Stillinger and
Weber �SW� potential,1 three versions of the Tersoff potential
�T1,2 T2,3 and T34�, the modified embedded atom method
�MEAM�,5,6 and several other potentials.5,7–14 Several exten-
sive comparisons of these empirical potentials for silicon
have appeared in the literature. For instance, Cook and
Clancy15 examined the behavior of the crystalline and liquid
phases of Si using the MEAM potential and the modified
version of the T3 potential �mod-T3�.16 In another study,
Balamane, Halicioglu, and Tiller17 performed a detailed
comparison of six Si potentials, including the most popular
SW and Tersoff potentials. They concluded that each of these
potentials has strengths and weaknesses and that none of
them is totally transferable.

Several attempts have been made to develop more trans-
ferable potentials. The environment-dependent interatomic
potential �EDIP� has been developed for Si12� and for C.18

The parameters were determined by fitting to a relatively
small ab initio database. To test the transferability of the
EDIP, the properties of amorphous and liquid silicon phases
were examined. Although the liquid produced from the po-
tential had some unphysical features, the distribution of bond
angles is closer to the experimentally determined distribution
than the distributions obtained with other potentials. The
EDIP also provides a better description of amorphous silicon
than other empirical potentials and produces reasonable
amorphous structures from melt. Unlike most empirical po-
tentials for Si,12,17,19 the EDIP potential accurately describes
the three elastic constants for diamond-cubic silicon, along
with the Cauchy discrepancy �C12−C44�. To its detriment,

however, the bond lengths for the many of the crystalline
silicon structures are overestimated. Recently a bond-order
potential �BOP� for Si, which is based on the tight-binding
description of covalent bonding, was developed.14 This po-
tential also does a reasonable job reproducing elastic con-
stants and the Cauchy pressure of diamond-cubic silicon. As
is the case with the EDIP, parametrizations have also been
published for Si-Si and C-C interactions within this formal-
ism but not for C-H, Si-H, and C-Si interactions.20–22

The Tersoff empirical potential energy functions,2–4,16 first
developed in 1986, were constructed to guarantee that the
universal relation between binding energy and bond length
put forth by Abell23 was obtained. The bond-order potentials
of Tersoff have spawned a number of other empirical poten-
tials. For example, Brenner developed a reactive empirical
bond-order �REBO� expression that describes hydrocarbon
molecules and solid-state carbon on equal terms.24,25 The
main difference between Brenner’s hydrocarbon REBO and
Tersoff’s carbon potential is the way in which the bond order
is handled for hydrocarbon molecules, the pair-attractive and
-repulsive terms remain the same. The REBO potential has
proven to be very popular and has spawned additional poten-
tial development. The form of this potential was adopted by
Murty and Atwater26 to model Si-H systems and was then
extended independently by Beardmore and Smith8 and
Dyson and Smith11 to include C-Si-H interactions. In addi-
tion, Sbraccia, Silvestrelli, and Ancilotto13 have modified
Dyson and Smith’s C-Si-H potential to improve its proper-
ties. Parametrizations also exist for Si-F,27 Si-Cl,27 and
C-Pt.28 With the exceptions of the T3, EDIP,12 and BOP14 the
performance of most empirical potential energy functions in
reproducing the zero-Kelvin elastic properties of diamond-
cubic silicon is marginal.19,29

Despite the popularity of the original REBO, Brenner,
Shenderova, Harrison, Stuart, Ni, and Sinnott30 reported sev-
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eral basic limitations of this potential. With these limitations
in mind, they developed the second-generation REBO.30

Among the many changes in the second version of potential,
the form of the angular function was changed to provide a
better fit to the elastic constants of diamond and graphite.
The second-generation formalism also provides a signifi-
cantly better description of bond energies, bond lengths,
force constants, interstitial defect energies, and surface ener-
gies for diamond than its predecessor. In addition to being
able to model the zero-Kelvin elastic constants of diamond,
the second-generation REBO potential also predicts the cor-
rect qualitative trends in elastic constants, bulk modulus, and
Cauchy pressure of diamond as a function of
temperature.31,32 In contrast, the original hydrocarbon REBO
is unable to reproduce the correct qualitative trends in these
properties as a function of temperature. Other potentials that
share the same C-C functional form and parameters as the
original REBO, such as the extended Brenner �XB� potential
of Dyson and Smith11 and the modified-extended Brenner
�mXB� potential of Sbraccia, Silvestrelli, and Ancilotto,13 are
also unable to reproduce the correct qualitative trends in
elastic constants of diamond with temperature.

Several types of covalent atoms have been parametrized
within the second-generation REBO formalism. These in-
clude the C-H interactions derived by Brenner and
coworkers,30 and the C-O-H interactions derived by Sinnott
and co-workers.33 The second-generation REBO has been
used extensively to model carbon nanotubes,34–36 polycrys-
talline diamond structures,37–39 and the tribology of amor-
phous carbon surfaces.40,41 Given the types of covalent inter-
actions that have already been parametrized, the ability to
reproduce the zero-Kelvin elastic constants and the correct
quantitative dependence of elastic constants on temperature,
along with the widespread use of the Brenner potential, a
parametrization for silicon �2B-Si� within the second-
generation REBO formalism has been developed. The pa-
rametrization was generated using a fairly large database of
experimental data and ab initio calculations consisting of
bond lengths, energies, and elastic constants. The resulting
parametrization provides a good description of bond lengths,
energies, and bulk moduli for a wide range of crystal struc-
tures including those not used in the parameter fitting pro-
cess. It accurately reproduces the energies and geometries of
point defects in the bulk and in ideal and relaxed �100� �1
�1� and �2�1� surfaces. It is also able to reproduce the
energies of the ideal and relaxed �111� �1�1� surfaces. The
2B-Si parametrization is able to produce amorphous silicon
structures that are in good agreement with experimentally
determined properties and those from ab initio MD studies.
In addition, it gives reasonable values for bulk modulus, the
elastic constants, and the correct sign for the Cauchy discrep-
ancy at zero-Kelvin and as a function of temperature. In this
work, the results of extensive calculations on diamond-cubic
silicon using the mXB potential also reported. These calcu-
lations confirm that the Si-Si portion of the mXB potential is
unable to model the temperature dependence of the elastic
properties of diamond-cubic silicon. This new parametriza-
tion for Si increases the number of atom pairs that have been
parametrized for the second-generation REBO formalism.
Ultimately, this should make it possible to use the second-

generation REBO potential for large-scale simulations of a
broad range of covalent materials.

This work is organized in the following way. The func-
tional form of the second-generation REBO potential and the
details of the parametrization of the attractive, repulsive, and
the bond-order terms are presented first. The structures, bulk
properties, interstitial defect energies, and surface energies of
a large number of crystalline silicon structures have been
calculated using this new parametrization and are presented
next. In an effort to test the transferability of the potential,
data for solid structures not included in the fitting database
are also calculated. For comparison, these calculations also
were conducted using the mXB potential. Data for EDIP and
BOP potentials, when available, are provided for compari-
son. �Because extensive comparisons of other Si empirical
potentials have appeared in the literature
previously,7,15,29,42,43 they are not included here.� Experi-
ments show that amorphous silicon is composed of a random
tetrahedral network of atoms. The ability of an empirical
potential to reproduce the structure of amorphous silicon
from quenching liquid silicon is an important test of any
potential energy function. With that in mind, the structure of
amorphous silicon obtained with the 2B-Si potential is com-
pared with the experimentally determined structure. For
completeness, the structural properties of liquid silicon are
also calculated. For comparison, amorphous and liquid sili-
con structures were also generated using the mXB potential
and the results of these calculations are presented. Finally,
the new parametrization �2B-Si� for silicon is used to calcu-
late the elastic moduli for diamond-cubic and amorphous
silicon as a function of temperature and the results are com-
pared to those obtained using mXB potential.

II. METHOD

A. Second-generation REBO potential

For an analytic potential energy function to be effective it
must be flexible, accurate, transferable, and be computation-
ally efficient. To date, analytic potentials with the highest
degree of transferability are those that are based on sound
quantum-mechanical bonding principles.44 It can be shown
that the bond-order potentials are based on the second-
moment approximation.44,45 The moments theorem states
that the nth moment of the local density of states on an atom
i is determined by the sum of all paths between n neighbor-
ing atoms that start and end at atom i. A good estimate of the
bond energy can be obtained by knowing only the second
moment, which is related to the energy beginning on atom i
and summing over the nearest neighbors.45,46 Thus, the local
electronic bond energy for each atom from molecular orbitals
is proportional to the square root of the number of neighbors.
Finnis and Sinclair46 used this approximation to derive an
expression for the energy of a solid in terms of pair-additive
interactions between atoms. Their expression can be rear-
ranged into an expression that is similar to the bond-order
potentials.44,45 Thus, the bond-order expressions of the “so-
called” bond-order potentials capture the essence of
quantum-mechanical bonding. It should also be noted that it
is possible to derive other analytic forms based on higher
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moments. For example, Pettifor and co-workers have devel-
oped a BOP that contains terms for � and � bonding from
the tight-binding model using the moments theorem.20–22,47

Gillespie, Zhou, Murdick, Wadley, Drautz, and Pettifor re-
cently developed parameters for Si-Si interactions within the
BOP formalism.14

The total potential energy within the second-generation
REBO formalism30,44 is given by

Eb = �
i

�
j�i

�VR�rij� − BijV
A�rij�� , �1�

where VR and VA are pairwise repulsive and attractive con-
tributions, respectively. The bond-order term Bij is a many-
body term, which is related to the local environment of at-
oms i and j. The pair potentials have the form

VR�r� = f c�r��1 + Q/r�Ae−�r, �2�

and

VA�r� = f c�r� �
n=1,3

Bne−�nr �3�

for the repulsive and attractive pair terms, respectively,
where A, Q, �, Bn, and �n are fitting parameters. The
screened Coulomb function used for the repulsive-pair inter-
action approaches infinity as interatomic distances approach
zero. The attractive term has sufficient flexibility to simulta-
neously fit the bond energy and force constants. The function
f c�rij� is a continuous piecewise cutoff function that depends
on the distance rij between atoms i and j and is given by

f c�rij� = �
1 for �0,rmin�
1

2
�1 + cos��

r − rmin

rmax − rmin
	
 for �rmin,rmax�

0 for �rmax,��
� .

�4�

The bond-order Bij term is significantly different from both
the Tersoff and the first-generation Brenner potential. Sepa-
rate terms are included that depend on local coordination and
bond angles, radical character and conjugation, and dihedral
angle for carbon-carbon �C-C� double bonds. The bond-order
term for the interaction between atoms i and j is given by

Bij =
bij

�−� + bji
�−�

2
+ �	ij

RC + bij
DH� , �5�

where bij, 	ij
RC, and bij

DH are the contributions to the bond-
order arising from covalent bonding, conjugation, and dihe-
dral torsions, respectively. The covalent-bond contribution is
given as

bij
�−� = �1 + �

k�i,j
Gi„cos�
 jik�…e�jik + corrections
−1/2

. �6�

The function G(cos�
�) is approximated by fifth-order spline,
which depends on the bond angle 
 jik between atoms j, i, and
k, where atom i is at the vertex of the angle. Following the
procedure outlined by Brenner and co-workers, � and the
correction term are taken to be zero for silicon systems.30

B. Fitting the Si-Si pair potential

The procedure outlined by Brenner and co-workers30 was
used to obtain parameters for the Si-Si pair potentials and
angular terms. The pair terms �Eqs. �2� and �3�� contain nine
parameters, A, Q, �, B1, B2, B3, �1, �2, and �3. These values
were optimized via least-squares minimization of an equa-
tion with the general form

Z = �
n=1

M

�E�rn� − E��rn��2 + �
n=1

M

�F�rn� − F��rn��2

+ �
n=1

M

�K�rn� − K��rn��2, �7�

where Z is the function to be minimized, E, F, and K are the
bond energy, force, and stretching force constant determined
using Eq. �1�, and its first and second derivatives, respec-
tively, M is the number of sets of data available in the fitting
database, r is the equilibrium bond length of structure n, and
the symbol ° denotes the corresponding value for structure n
given from a fitting database. A simulated annealing algo-
rithm implemented via the software package MATHEMATICA48

was used to optimize the parameters. The database used for
fitting these parameters and the values of the bond order
consists of equilibrium distances, atomization energies, and
stretching force constants for various silicon structures. Val-
ues for the properties in the database used for the fitting were
determined the following way: Minimum-energy distances
were taken from the literature and are tabulated in Table I.
The force constants were either taken from the literature or
calculated using the Badger-rule expression,

K = a�re − b�−3, �8�

where K is the force constant, re is the minimum-energy
bond distance, and a and b are adjustable parameters. These
two parameters were determined through least-squares fitting
of minimum-energy distances and either force constant, bulk
modulus, or vibrational frequency data found in the litera-
ture. Existing bond-additive values for determining molecu-
lar heats of formation of silanes generally include zero-point
energies. For a classical potential, a new set of values, with-
out zero-point energies, must be determined. To derive these,
the heats of formation and zero-point energies for the mol-
ecules Si2H6, Si2H4, Si2H2, and SiH4 were used to determine
the molecular atomization energies. Assuming a constant
value for the silicon-hydrogen bond, these atomization ener-
gies provide a complete set of data from which the bond-
additive energies for the molecular silicon-silicon bonds can
be derived.

To reduce the number of variables needed to fit both pair
terms, initial guesses, which correspond to the C-C values
from the second-generation REBO potential, were used for
A, Q, and �. Values for B1, B2, B3, �1, �2, and �3 were
determined by a least-squares minimization of Eq. �1� and its
first derivative using the equilibrium bond distance and en-
ergy from a Si-Si single bond. The equilibrium bond distance
and energy of a Si-Si single bond were taken to be equal to
the equilibrium bond length and bond energy of diamond-
cubic silicon. The bond orders for first five structures in
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Table I were determined by setting the derivative of Eq. �1�
equal to zero and solving for Bij. For the remaining solid Si
structures, bond energies and force constants were calculated
at each structure’s minimum-energy bond length using Eq.
�1� or its second derivative, respectively. Two least-squares
sums, one for the energies and another for the force constants
were generated using the values in Table I. This sum was
minimized by adjusting the three remaining parameters: A,
Q, and �. The values of A, Q, and � obtained from the
minimization replaced the initial guesses and the entire pro-
cess was repeated until a global minimum of the least-
squares sum in Eq. �7� was reached. The final parameter
values obtained through this procedure are shown in Table II.
The cutoff parameters rmin and rmax were taken to be the
same as those given by Sbraccia, Silvestrelli, and Ancilotto
for the mXB potential.13

The repulsive and attractive pair terms calculated using
the Si-Si parameters determined above are shown Fig. 1�a� as

a function of interatomic distance. The total pair terms cor-
responding to the diamond-cubic, simple-cubic, and face-
centered-cubic Si-Si bonds are shown in Fig. 1�b�. The dif-
ferences in these curves arise from the different bond-order
terms for each solid silicon structure.

Using the Si-Si pair parameters and the pair potentials, the
bond energy and force constants as a function of equilibrium
bond distance were calculated �Fig. 2�. For comparison, the
bond energy and force constants calculated using the mXB
potential are also shown in Fig. 2. The fitting data from Table
I are indicated by the diamonds in each plot. It is clear from
examination of Fig. 2 that the Si-Si parametrization pre-
sented here accurately describes bond energies, distances,
and force constants. In contrast, the first-generation REBO
potential is unable to describe these properties simulta-
neously. This deficiency is most notable at short bond
lengths. It appears that the mXB potential attempts to strike
some compromise between accurate bond energies and force
constants.

C. Fitting the bond order and G(cos(�))

For the potential energy function to be able to model
chemical reactions, where bond angles can change, an ana-
lytic form for the bond-order term must be available. This
analytic form is obtained from fitting the discrete values of

TABLE I. Data used in the fitting scheme.

Species
�H

�eV�a
Zero-point

energy �eV�a
Atomization
energy �eV�

Si-Si bond
energy �eV�

Si-Si bond
distance �Å�

Si-Si force constant
�Dyn/cm�

Diamond
Cubic

4.630b 2.315 2.351b 161241.3e

Hexagonal
planar

4.022b 2.681 2.3b 180642.1f

Simple
cubic �SC�

4.292b 1.431 2.515b 114515.4e

Body-
centered
cubic �BCC�

4.191b 1.048 2.635b 95834.4e

Face-
centered
cubic �FCC�

4.146b 0.691 2.8b 80232.4e

SiH4 0.36 0.83 13.345c

Si2H2 4.81 0.38 12.847c 8.650 1.941a 580460g

Si2H4 2.91 0.83 16.278c 3.874 2.17a 270446h

Si2H6 0.96 1.30 20.621c 2.015 2.4a 142697i

Si-H bond 3.86 0.12 3.062c 3.101

Si-Si dimer 1.565c 3.130d 2.24d 222321.2i

aFrom Ref. 49.
bFrom Refs. 50–52.
cCalculated assuming �Hsilicon=4.66 eV, �Hhydrogen=2.26 eV. �Ref. 49�.
dFrom Ref. 26.
eCalculated using bulk modulus values given in Ref. 53.
fCalculated using bulk modulus values given in Ref. 52.
gCalculated from the Si-Si stretch wave number given in Ref. 54.
hEstimated using Eq. �8� �a=288691 Å3 dyn /cm, b=1.148 Å�.
iCalculated from the Si-Si stretch wave number given in Ref. 26.

TABLE II. Parameters for the Si-Si pair terms in Eqs. �2� and
�3�.

B1=92.74551 eV �1=1.72687 Å−1 Q=15.6614 Å

B2=255.329 eV �2=1.64617 Å−1 A=90.1964 eV

B3=−3.4026 eV �3=132.454 Å−1 �=2.13083 Å−1

rmin=2.500 Å rmax=3.050 Å
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the bond-order to quintic-spline functions. In the case of Si,
the �-bonding and dihedral terms in the empirical bond-
order function �	RC and bDH in Eq. �5�� are assumed to be
zero. This is the approach used by many empirical Si
potentials29 and it is a reasonable assumption because Si
typically forms single bonds. Thus, only the first term in Eq.
�5� remains. In both the first- and second-generation REBO
formalisms, this term is given by

bij
�−� = �1 + �

k�i,j
f ik

c �rik�Gi„cos�
 jik�…e�jik
−1/2
, �9�

where i, j, and k still refer to the atom identity and the
function f c�r� ensures that the bond order only includes
nearest-neighbor interactions.

The contribution that each neighbor makes to the empiri-
cal bond order is modulated by the G(cos�
�) function ac-
cording to the cosine of the angle of the bonds between at-
oms i and k and atoms i and j. The procedure for determining
the analytic form for the G(cos�
�) function is described be-
low. Because the diamond-cubic and hexagonal planar lat-
tices contain only one angle each, 109.47° and 120°, respec-
tively, Eq. �9� and the discrete values for the bond-order
parameter can be used to yield the value of G(cos�
�) at each
angle. The values of G(cos�
�) at 0° and 180° were esti-
mated. The SC lattice contains both 180° and 90° angles;
therefore, the G(cos�
�) value at 90° was determined using
the discrete bond order determined for SC lattice and the

estimated G(cos�
�) for 180°. For similar reasons, the value
for G(cos�
�) at 70.53° was determined using the discrete
bond order for BCC solid silcon and the values of G(cos�
�)
at 109.47° and 180°. Finally, the value of G(cos�
�) at 60°
was determined using the discrete bond order for the FCC
lattice and the G(cos�
�) values at 90°, 120°, and 180°. Ad-
justments to the initial guesses of G(cos�
�) at 0° and 180°
were made and the process was repeated until the points
comprising the discrete values of G(cos�
�) fit a smooth
function, which decreases as the bond angle increases.

Different quintic-polynomial splines in cos�
� were used
in three regions of the bond angle 
, 0° 


109.47°,
109.47° 


120°, and 120° 


180° to complete the
G(cos�
�) function. Because there are six spline coefficients,
two values of the function and its first and second derivatives
are needed in each region of the spline. The value of the
second derivative of G(cos�
�) at 109.47° was fit to the elas-
tic constant C11 for diamond-cubic silicon. The remaining
first and second derivatives were chosen to suppress spurious
oscillations in the splines and to fit the discrete values of
G(cos�
�) at bond angles in-between the spline nodes. The
complete set of splines that compose the G(cos�
�) function
are shown in Fig. 3 and the coefficients of these splines are
given in Table III.

III. RESULTS AND DISCUSSION

A. Crystalline silicon structures

The equilibrium lattice parameters, cohesive energies, and
bulk moduli calculated using the new second-generation
REBO parametrization �2B-Si� for Si are shown in Table IV.
Values from the first-principles calculations or from experi-
ment, values calculated using the mXB potential, and avail-
able data obtained using both the EDIP and the BOP are also
included for comparison. The values obtained with the EDIP
and the BOP are included here because both potentials do a
reasonable job reproducing the zero-Kelvin elastic constants
for diamond-cubic silicon. In addition, the EDIP produces an
amorphous structure from the melt that is similar to the
structure obtained from ab initio MD simulations. Because
detailed comparisons of many other empirical Si potentials,
e.g., SW, T2, and T3,7,15,29 have appeared previously in the
literature, comparisons to those potentials are not included in
Table IV.

Both the new 2B-Si parametrization and the mXB poten-
tial do an excellent job reproducing cohesive energies and
lattice constants. With the exceptions of the diamond-cubic,
SC, and the �-Sn structures, the EDIP produces bond lengths
that are slightly longer than the experimental values. The
2B-Si and the mXB potentials also do a reasonable job re-
producing bulk moduli of the structures that were used in the
parametrization, i.e., diamond, hexagonal planar, SC, BCC,
and FCC. The elastic constants of the diamond-cubic struc-
ture were used in the fitting of the EDIP. Because the bulk
modulus and two elastic constants are related via the relation
B= 1

3 �C11+2C12�, the EDIP also reproduces the bulk modulus
of this structure. Bulk moduli calculated with the EDIP are
not available for the other crystalline silicon structures. The
bulk modulus obtained using the BOP is also reasonably
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FIG. 1. �a� Pair-attractive �negative-dashed� and pair-repulsive
�positive-solid� curves for the silicon parametrization of the second-
generation REBO potential. �b� The total pair potential for a single
Si-Si bond for the diamond-cubic �solid line�, simple-cubic �short-
dashed line�, and face-centered-cubic �long-dashed line� phases of
silicon. Potential truncation due to the cutoff function fc is not
shown.
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close to the experimental value despite underestimating C11
by 21%. The 2B-Si potential, the EDIP, and the BOP are able
to reproduce the zero-Kelvin elastic constants for the
diamond-cubic structure. The mXB potential is able to repro-
duce the bulk modulus for the diamond structure because it
reproduces the force constant of the Si-Si bond. However, it
fails to accurately predict the zero-Kelvin elastic constants
for the diamond-cubic structure which are more closely
linked to the angular dependence of the potential.

Silicon has a negative Cauchy discrepancy �C12−C44�.55

The values of C12−C44 are −14 GPa from experiment,

−41 GPa from the 2B-Si potential, and +55 GPa for the
mXB potential, respectively. The 2B-Si potential, the EDIP,
and the BOP are among the few empirical silicon potentials
that produce a negative Cauchy discrepancy. �For an expla-
nation of how the Cauchy discrepancy can be fit within the
BOP formalism see Ref. 56.� Because most empirical poten-
tials underestimate C44, these potentials are also unable to
reproduce the negative Cauchy discrepancy. While the
Cauchy discrepancy does not have any physical implications
for crystal stability, the values of the individual elastic con-
stants are important for crystal stability. In the case of zero
applied stress, there are three elastic stability criteria: C11
+2C12�0, C44�0, and C11−C12�0.57 The first is related to
the bulk modulus, the second to the shear modulus, and the
third is related to the modulus against tetragonal shear. While
all of the common empirical potentials for silicon meet these
criteria, most of these potentials significantly underestimate
the value of C44.

19,29 Because the 2B-Si was fit to C11 and the
bulk modulus of diamond-cubic silicon, it also accurately
reproduces C12. The value of C44 was not used in the fitting

TABLE III. Parameters for the angular contribution to the sili-
con bond order.

cos�
� G(cos�
�) dG /d(cos�
�) d2G /d(cos�
�)2

−1 −0.122736935 0.065720000 0.320763152

−1 /2 −0.044734259 0.249121746 0.380715536

−1 /3 −0.000223579 0.308832492 1.125000000

1 0.980000000 1.800000000 2.610000000
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FIG. 2. Plots of bond energy and force constant as a function of bond length for the Si-Si pair terms for the 2B-Si ��a� and �b�� and mXB
��c� and �d�� potentials.
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TABLE IV. Equilibrium lattice parameters �a0 and c0� in Å, cohesive energy relative to diamond-cubic
silicon ��E� in eV, and bulk modulus �B� in GPa from experiment and ab initio calculations �Exp/ab�, the
second-generation REBO parametrization �2B-Si� and the modified-extended Brenner �mXB� potential.
Available data for the environment-dependent interatomic potential �EDIP� and Gillespie’s bond-order po-
tential �BOP� are also shown for comparison. The zero-Kelvin elastic constants for silicon in the diamond
structure �in GPa� and Si-Si dimer bond length, bond energy, and force constant K �in dyn/cm� are also given.

Lattice Exp/aba 2B-Sib mXBb EDIPc BOPd

Diamond
cubic

a0 5.429 5.429 5.429 5.43 5.43

E −4.63 −4.63 −4.63 −4.65 −4.63

B 101.9 102.9 98.2 99 92.29

C11 171.5 176.0 109.2 175 134.89

C12 67.1 66.3 93.0 62 70.98

C44 81.1 108.0 38.0 71 84.03

C44
0 111e 138.5 28.5 112

C11-C12 104.4 109 16.2 113 63.91

C12-C44 −14 −41.7 55.0 −9 −13.05

Si dimer r0 2.24f 2.24 2.24

E −3.13f −3.10 −3.05

K 222321f 227204 210636

Hexagonal
planar

a0 3.984 3.984 3.995 4.018

�E 0.61 0.64 0.76 0.640

B 50g 58.3 56.0

SC a0 2.515 2.545 2.510 2.503

�E 0.34 0.50 0.36 0.532 0.20

B 105.6h 86.9 86.3 126.43

BCC a0 3.042 3.076 2.947 3.243

�E 0.44 0.61 0.76 1.594 0.60

B 111.3h 84.2 74.2 74.09

FCC a0 3.960 3.944 3.761 4.081

�E 0.48 1.26 2.62 1.840 0.55

B 93.54h 46.3 40.7 80.95

�-Sni,j a0 /c0 4.828 /2.634 4.819 /2.629 4.698 /2.563 4.76/�

�E 0.21 0.42 0.39 0.67

B 129.1h 145.5 105.4 
90l

BC8i,j a0 6.640 6.657 6.621

�E 0.11 0.32 0.15

B 96.4h 97.3 365.7 
102l

BCT5i,j a0 /c0 5.959 /3.312 6.072 /3.375 6.066 /3.372 �/3.36

�E 0.23 0.26 0.14 0.26

B 111.4k 121.4 119.7

aValues for diamond-cubic silicon are from experiment. Energies and lattice constants are from the DFT/LDA
calculations of Yin and Cohen51,52, unless otherwise noted.
bCalculated in this work.
cFrom Ref. 12.
dFrom Ref. 14.
eThe DFT/LDA calculation for C44

0 is from Ref. 61.
fFor the Si dimer from Ref. 26.
gFrom Ref. 52.
hFrom Refs. 53 and 62.
iThese structures were not included in the database used to fit the potential.
jDFT/LDA from Refs. 61 and 63.
kDFT/LDA from Ref. 62.
lEstimated from Fig. 3 of Ref.14.
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procedure and the potential overestimates this value. The
BOP accurately reproduces C12 and C44 but underestimates
C11. In contrast, the EDIP potential uses all three of the elas-
tic constants in the fitting procedure and reproduces these
values well.12 In the case of finite strain, the elastic stability
criteria take slightly different forms depending upon the type
of applied stress.58 For example, under hydrostatic pressure
�P� the stability criteria are given by �C11+2C12� /3− P /3
�0 �spinodal criterion�, C44− P�0 �shear criterion�, and
�C11−C12� /2− P�0 �Born criterion�. Therefore, empirical
potentials that significantly underestimate C44, as most exist-
ing potentials do, may not be stable under large hydrostatic
pressures.

To test the transferability of the 2B-Si potential, equilib-
rium lattice parameters, cohesive energies, and bulk moduli
were calculated for several metastable structures of silicon
��-Sn, BC8, and BCT5�, which were not included in the
fitting database �Table IV�. The �-Sn structure is a body-
centered tetragonal unit cell with a two-atom basis. The
angles between the four-nearest neighbors are 149° and 94°.
The BC8 structure is a BCC lattice with an eight-atom basis
with two bond angles of 117.9° and 99.2°.59 The theoretical
BCT5 structure is a body-centered tetragonal lattice with
fivefold coordination.60 Cartesian coordinates for each unit
cell can be obtained from http://cst-www.nrl.navy.mil/
lattice/. Of the three potentials where data are available �2B-
Si, mXB, and EDIP�, the 2B-Si potential performs slightly
better when predicting the equilibrium lattice parameters of
all three structures. The �-Sn is somewhat problematic for
both the mXB potential and the EDIP with both potentials
predicting lattice constants that are short compared to the
DFT value. None of the three potentials is able to accurately
predict the cohesive energy of the �-Sn structure. Both the
2B-Si and the mXB potentials predict a change in energy
��E� that is approximately two times larger than the experi-
mentally determined value while the EDIP value is about
three times larger. The cohesive energies for the BCT5 and
the BC8 structures are mixed. The predictions for the cohe-
sive energy of the BCT5 structure obtained with the 2B-Si
potential and the EDIP are equal and very close to the DFT
value. In contrast, the cohesive energy obtained with the
mXB potential is not large enough. In the case of the BC8
structure, the mXB potential does the best job reproducing
the cohesive energy while the value obtained with 2B-Si po-
tential is too large. The values obtained for the bulk moduli
of these three structures using mXB and the 2B-Si potentials
differ markedly. While the 2B-Si potential does a reasonable
job predicting the bulk moduli of these structures, the mXB
potential does not. In fact, the value of the bulk modulus for
the BC8 structure predicted with mXB is about 3.5 times too
large.

To be useful, a potential energy function must predict the
most stable thermodynamic structure. For solid silicon, the
diamond-cubic structure is the lowest energy structure. Ex-
amination of the data in Table IV for the 2B-Si potential
reveals that the diamond-cubic structure has the lowest co-
hesive energy of the ordered structures listed. To insure that
there are no disordered Si structures with a lower energy than
the diamond-cubic structure, the energies of disordered struc-
tures must be examined. Following the general method out-

lined by Brenner,30 a system consisting of 1000 Si atoms was
melted at 3500 K and then slowly cooled to 10 K over a
period of 10 ns in a constant pressure ensemble. Once cooled
to 10 K, the potential energy was minimized using a steepest
descent algorithm.64 The average cohesive energy of the sys-
tem was found to be −4.400 eV/atom or 0.23 eV higher than
diamond-cubic silicon and the density was 2.29 g /cm3, 2.1%
lower than the diamond-cubic structure. Examination of
many amorphous structures generated with the 2B-Si, using
by various procedures, strongly suggests that diamond-cubic
silicon is indeed the most stable form of solid silicon.

The formation energy of point defects governs their con-
centration. Because point defects are more mobile than per-
fectly bonded atoms, diffusion in silicon is dominated by
point defects.53 Therefore, the formation energy is an impor-
tant property. Calculated values of the relaxation energies of
two interstitial defects in diamond-cubic silicon, the tetrahe-
dral �IT� and the hexagonal �IH�, and the vacancy are shown
in Table V. �Available data obtained with the EDIP and the
BOP are also shown for comparison.� The point-defect ener-
gies were calculated at zero pressure by iteratively relaxing
the atomic coordinates via a steepest descent algorithm and
adjusting the cubic periodic box dimensions via a golden
section search routine until the change in total energy be-
tween iterations reached a tolerance level of �E=1
�10−8 eV.64 A small cell containing 64�1 atoms with cubic
periodic boundaries was used to simulate a bulk environ-
ment. The reference is a perfect diamond-cubic Si lattice.
The formation energy Ef is given by29

Ef = E − �N � 1�Ec,

where E is the total simulation energy of N�1 atoms, +1 for
an interstitial and −1 for a vacancy, and Ec is the bulk cohe-
sive energy of diamond-cubic silicon.

It is clear from examination of Table V that the relaxation
energies calculated with the 2B-Si potential and the EDIP are
very close to the range of values reported from DFT calcu-
lations. In contrast, two of the energies obtained with the
mXB potential and all three of the values obtained with the
BOP fall outside the DFT ranges.

B. Free surfaces

Due to their importance to the microelectronics industry,
the �100� and �111� surfaces of Si have been studied exten-

TABLE V. Relaxed energies �eV� of point defects in diamond-
cubic silicon. Ab initio �DFT/LDA� data are given as a range of
reported values for the formation energy of the ideal structure and
relaxation energy �Erelax of the relaxed structure �in parentheses�.

2B-Si mXB EDIPa BOPb DFT/LDAc

V 3.98 4.03 3.22 2.759 3.3–4.3 �0.4–0.6�
IT 4.55 3.24 4.05 2.846 3.7–4.8 �0.1–0.2�
IH 4.00 2.45 4.16 2.636 4.3–5.0 �0.6–1.1�
aFrom Ref. 19.
bFrom Ref. 14.
cFrom Ref. 53.
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sively. �For a review of these surfaces, see Ref. 65.� The
properties of free surfaces are important for surface growth
and etching. Because these surfaces exhibit a large number
of reconstructions and the geometry of the surface atoms
differs from the bulk, they provide another interesting test for
the transferability of any empirical potential. The surface en-
ergies of the ideal and relaxed �100� �1�1� surface calcu-
lated with the 2B-Si and the mXB potentials are shown in
Table VI. For comparison, available DFT data are also
shown. Both potentials produce surface energies that are
within 9% of the DFT value with the 2B-Si value being a bit
closer to the DFT value. The reduction in surface energy and
the surface contraction for the relaxed structure is also pre-
dicted by both potentials. It should also be noted, however,
that the percentage contraction obtained using the mXB po-
tential is closer to the DFT value.

A number of models have been proposed to explain the
experimentally determined surface patterns on the �100� sur-
face. Images obtained using scanning tunneling microscopy

have confirmed that the dimer model is correct.66,67 Dimer-
ization occurs when two surface atoms, initially in their ideal
�100� positions, move toward each other along the �110� di-
rection �Fig. 4�. The surface dangling bonds then form a
bond. This structure is known as the �2�1� reconstruction.
Figure 4 shows the symmetric dimer structure which appears
in defect-free surfaces.66,67 However, when defects are
present, the dimer is buckled and asymmetric and causes
subsurface atomic displacements that extend four layers into
the bulk. Both the mXB and the 2B-Si potential predict that
the �2�1� reconstructed surface is lower in energy than the
ideal or relaxed structures in agreement with the DFT calcu-
lations. In fact, most empirical potentials, except for the T2
potential, predict a change in surface energy for this recon-
struction that is in agreement with the DFT value.29 The
change in surface energy predicted from the mXB potential
is closer to the value predicted by DFT calculations while the
first-layer contraction predicted by the 2B-Si potential is
closer to the DFT value.

With the exception of the 
3 �Fig. 4�, the remaining dis-
tances and bond angles are reproduced reasonably well by
both potentials. It should be noted that values for the angle 
3
obtained with most other empirical potentials more closely
match the DFT value. Because the buckling of the dimer is a

TABLE VI. Selected properties of Si�100� surfaces. � is the
surface energy, �� is the relative energy with respect to the ideal
�1�1� surface, � is the first interlayer contraction �in %�, rd and rbb

are the bond lengths �in Å� of the dimer and the back bond between
surface and second-layer atoms, and 
1 ,
2 ,
3 are the bond angles
as indicated in Fig. 4. Energies are in units of eV / �1�1� cell.
Unless otherwise noted, DFT results are from Refs. 29 and 53 and
references therein. �Data have not been published for the EDIP or
BOP.�

2B-Si mXB DFT

Ideal �1�1�
� 2.31 2.28 2.50

Relaxed �1�1�
�� −0.04 −0.02 −0.03

� −6.62 −5.15 −5.10

�2�1�
�� −0.76 −0.85 −0.93

� −6.41 −4.57 −24.40

rd 2.35 2.30 2.23

rbb 2.33 2.35 2.29


1 108.6° 108.3° 107.8°


2 91.6° 92.6° 92.9°


3 106.1° 104.9° 100.8°

TABLE VII. Selected properties of Si�111� surfaces. � is the
surface energy, �� is the relative energy with respect to the ideal
�1�1� surface, � is the first interlayer contraction �in %� and ra2 is
the distance between adatoms and the second layer �in Å�. Energies
are in units of eV / �1�1� cell. DFT/LDA results are from Refs. 2,
29, 62, 68, and 73.

2B-Si mXB DFT/LDA

Ideal �1�1�
� 1.16 1.49 1.56

Relaxed �1�1�
�� −0.11 −0.12 −0.17

� −24.0 −16.5 −27.0

��3��3�H3

�� 0.30 −0.52 −0.07

ra2 1.91 2.31 2.12

��3��3�T4

�� 0.69 −0.37 −0.28

ra2 2.58 2.48 2.49

�2�2� H3 hexagonal

�� 0.21 −0.46 −0.24

ra2 1.99 2.05

�2�2� T4 hexagonal

�� 0.48 −0.39 −0.24

ra2 2.58 2.48

�2�2� H3 rectangular

�� 0.20 −0.48 −0.17

ra2 1.96 2.01

�2�2� T4 rectangular

�� 0.48 −0.39 −0.28

ra2 2.58 2.48

z [001]

x [110]

rd

rbb θ 1

θ 2

θ 3

FIG. 4. Side view of the Si�100� �2�1� surface showing the
symmetric dimer configuration. Indicated on the figure are bond
lengths and angles given in Table VI.
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quantum-mechanical phenomenon, all of the previously pub-
lished empirical potentials produce a symmetric dimer
structure.29

The predicted surface energies for the ideal Si�111�
�1�1� surface using the mXB and the 2B-Si potentials, as
well as the DFT values, are shown in Table VII. Balamane,
Halicioglu, and Tiller showed that all six of the empirical
potentials they examined underestimated the surface energy
of the ideal Si�111� �1�1� surface.29 This is also the case
with the mXB and the 2B-Si potentials. The energy produced
using the mXB potential yields the closest value to the DFT
value followed by the 2B-Si, which gives a similar energy as
the SW potential. When the surface is relaxed, both empirical
potentials examined here yield a lower energy and the value
is in reasonable agreement with the DFT value. This is not
the case for all empirical potentials. The energy decrease
predicted by the T2 and T3 potentials is not nearly large
enough, while the SW potential predicts no decrease at all.29

The 2B-Si potential does a better job reproducing the surface
contraction of the relaxed surface than the mXB potential.

On the �1�1� surface, adatoms can be placed in a tetra-
hedral site directly over a second-layer atom �T4� or in a
tetrahedral site directly over a hollow �H3�.68 Both �2�2�
�hexagonal and rectangular� and ��3��3� surface recon-
structions are possible. The surface energies of all the pos-
sible adatom structures calculated using DFT and the local
density approximation �LDA� are lower than the ideal
�1�1� surface energy. Meade and Vanderbilt have assigned
this energy difference to different electronic structures of the
surfaces.69 Recent DFT calculations that utilize the Perdew-
Burke-Ernzerhof generalized gradient approximation and
Gaussian basis functions obtain the same trend in surface
energies as obtained with LDA/DFT calculations; however,
the �2�2� H3 and ��3��3� H3 structures were less stable
than the ideal �111��1�1� surface.70 Recent nonorthogonal
tight binding �TB� calculations obtain values for the surface
energies of the �2�2� H3 and the �2�2� T4 structures in
good agreement with the early DFT/LDA values.53

The surface energies obtained with the mXB and the
2B-Si potentials for the adatom surface reconstructions dis-
cussed above are shown in Table VII. Only the mXB poten-
tial correctly predicts that all the adatom structures are more
stable than the ideal �1�1� surface. The only other empirical
potential to predict the correct sign of the surface energies
relative to the ideal �1�1� surface is the T2 potential.29,71

However, the relative ordering of the adatom structures pre-
dicted by both the T2 and the mXB potentials is different
from the DFT/LDA results. The 2B-Si potential, like the ma-
jority of empirical Si potentials, is unable to predict the low-
ering of the surface energy in the presence of adatoms on the
�1�1� surface. Despite this, it correctly predicts the first-
interlayer contraction.

Balamane, Halicioglu, and Tiller suggest that the compe-
tition between the energy gain associated with a reduction in
the number of dangling bonds and the strain caused by the
very small bond angles present in these adatom structures
will dictate the stability of the adatom structures.29 They con-
clude that because the bond-bending forces in the T2 poten-
tial are small, it provides a better description of surface en-
ergies in these systems than potentials with larger bond-

bending forces, such as the T3 potential. In the same way, the
bond-bending forces in the mXB potential are weaker than
the 2B-Si potential; thus, it provides a better description of
the surface energies of adatom structures. It should be noted
that these structures can be accurately modeled. For example,
Khor and Das Sarma72 modified the angular portion of their
earlier potential so that adatom energies could be accurately
modeled. However, the Khor and Das Sarma potential does
not allow the character of the bonds to change as the atoms
move in a simulation.

C. Amorphous silicon

A particularly stringent test of the transferability of the
potential is how well it can reproduce properties of amor-
phous silicon �a-Si� because no information about a-Si was
included in the fitting procedure used here. Several amor-
phous structures were generated by melt and quench tech-
niques. Two structures �Fig. 5� were generated from the melt
using a method similar to that described by Tersoff.4 A sys-
tem of 1000 Si atoms was equilibrated at 3500 K using a
constant-pressure ensemble. Over a period of 125 ps, the

FIG. 5. �Color online� Ball and stick representation of a-Si gen-
erated using the mXB �lower panel� potentials and the 2B-Si �upper
panel� potentials. The atoms have been colored by their coordina-
tion number. Red, green, and blue spheres indicate threefold, four-
fold, and fivefold coordination, respectively.
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system was cooled to 1000 K at constant pressure. Once the
system reached equilibrium, it was cooled to 300 K and
equilibrium established again. For comparison, a second sys-
tem was generated using identical simulation conditions and
the mXB potential �also shown in Fig. 5�. No artificial meth-
ods, such as the bond-switching method,74 were required to
generate these amorphous structures. It should be noted that
only a small number of empirical Si potentials, e.g., EDIP
and now the 2B-Si, are able to produce a physically reason-
able amorphous structure by quenching liquid Si.

The radial distribution function, density, average coordi-
nation number, and bond-angle distributions were calculated
for both of the structures in Fig. 5 and the results are shown
in Table VIII. The average coordination number �C1� is given
by

C1 =
1

n
�

i
�
j�i

f ij
c . �10�

For comparison, available data for structures generated using
the EDIP potential are also shown.12 The density, first- and
second-neighbor distances, and average bond angle for the
a-Si structures generated with the 2B-Si potential, mXB po-
tential, and the EDIP are all in excellent agreement with
experimental data.

All three of the potentials predict an average coordination
number that is slightly higher than the experiment. The 2B-Si
and the mXB produce 13.5% and 6.7% fivefold coordinate
defects �also referred to as T5 or floating-bond defects�, re-
spectively. The 2B-Si potential also predicts a small number
of threefold coordinate defects �0.4%� �also referred to as T3
or dangling-bond defects�. No T3 defects were present in
a-Si created using the mXB potential. There are some ex-
perimental results and high level ab initio MD simulations
that indicate both T3 and T5 defects may be present in
a-Si.75–80 To what degree T5 defects are present, and what

role they play in a-Si properties, is still a subject of
debate71,79,81,82 and it is not possible to experimentally detect
these defects.

It is also interesting to note that when the quench rate was
reduced from 
300 K /ps to 
0.350 K /ps the percentage
of T5 defects was reduced from 13.5% to 4.8% while the
number of T3 defects was approximately constant when the
2B-Si potential was used. This same trend was apparent in
structures produced from ab initio MD simulations.80 This
suggests that the high value of average coordination obtained
in the MD simulations may be related to the limitations on
quenching rate or annealing time.

TABLE VIII. Density ���, first- �R1� and second-neighbor �R2� peak distance from the radial distribution,
average coordination number �C1� and average bond angle �
�, FWHM values for the bond angle distribution,
and zero-Kelvin elastic constants in GPa for crystalline Si �c-Si� from experiment and a-Si from experiment
and simulation using the 2B-Si, mXB, and EDIP potentials. FWHM is the full width at half maximum.

Experiment
c-Si

Experiment
a-Si 2B-Si a-Si mXB a-Si EDIPe

� �g cm−3� 2.34 2.11–2.29b 2.29 2.29 2.255

R1 �Å� 2.356a 2.352c 2.356 2.356 2.369

R2 �Å� 3.841a 3.81c 3.819 3.873 3.809

C1 �atoms� 4.021a 3.881c 4.11 4.07 4.05


 �FWHM� 109.5° a 108.6° �11°� 108.5° �26°� 108.5° �38°� 108° �18°�
C11 171.5 156d 138.8 113.6

C12 67.1 58.4d 71.1 76.3

C44 81.1 48.8d 33.7 18.6

aDetermined from radial distribution function generated from powder diffraction experiment.83,84

bRange of values reported from various sources.83–86

cDetermined from analysis of radial distribution function for annealed a-Si.83,84

dFrom Ref. 87.
eFrom Ref. 12.
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FIG. 6. �Color online� Radial distribution functions for a-Si at
300 K. In order from the top of the figure, distributions obtained
using the EDIP12 �pink solid�, the mXB potential �blue dashed�, the
2B-Si �green solid�, and from experiment83,84 �red dashed� are
shown. These data are normalized so that g���=1 and the curves
are offset from the experimental curve by 2, 4, and 6 units, respec-
tively, on the y axis for clarity.
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The radial distribution functions for the a-Si structures
generated using both potentials are shown in Fig. 6. For
comparison, the experimentally determined radial distribu-
tion function for an ion-implanted, annealed a-Si83,84 and the
function generated using the EDIP12 are also shown. It is
clear from examination of this figure that all three potentials
predict the correct placement of the first- and second-
neighbor peaks relative to experiment. The intensities of the
first-neighbor peaks generated with the three potentials are
nearly equal and approximately twice as intense as the ex-
perimentally determined data. In contrast, both the EDIP and
the 2B-Si potential accurately reproduce the intensity of the
second-neighbor peak while the mXB potential does not.

The bond-angle distribution in experimentally produced
annealed a-Si is determined to be 108.6° with a full width at
half maximum �FWHM� of 11.0°,78 which is near the ideal
tetrahedral bond angle of 109.5°. The calculated bond-angle
distributions for the a-Si structures generated using the 2B-Si
and mXB potentials are shown in Fig. 7. The data for the
EDIP are also shown for comparison.12 Both the 2B-Si and
the mXB distributions have maxima at a bond angle of
108.5°, while the distribution generated using the EDIP is
centered about 108.0°.

The 2B-Si generated a-Si has a narrower angle distribu-
tion with a FWHM value of 26°, whereas the distribution
generated using the mXB potential has a fairly broad peak
with a FWHM value of 38°. This suggests that the 2B-Si
potential generates a-Si with a higher level of tetrahedral
ordering. The distributions generated with both potentials
have small peaks at 60°. The distribution generated using
2B-Si potential also has a small shoulder at 78°. Both of
these peaks are due to the presence of T5 defects. Further
analysis of the bond angles indicates that the T3 defects
found in the 2B-Si generated a-Si have an average bond
angle of 119.5°, which indicates that their geometry is nearly
planar. In contrast, the geometry predicted for T3 dangling-
bond defects predicted by ab initio calculations is nearly
tetrahedral.88

D. Liquid silicon

While the 2B-Si potential was not developed to model
liquids, examining the performance of this potential for liq-
uid Si provides another interesting test of its transferability.
Most empirical Si potentials are unable to fully describe the
liquid phase.12,89 Two existing empirical potentials �SW and
MFF90� that are able to describe the liquid phase of Si with
varying levels of success were each fit to reproduce the melt-
ing point. The SW potential also reproduces the pair-
correlation function of the liquid;1,89 however, it does not
reproduce the ab initio bond-angle distribution.80,89

Another potential that has had some success describing
the liquid phase of Si is the T3 potential. The radial distri-
bution function generated with the T3 potential is in general
agreement with the experimentally determined function with
the first peak appearing at 2.45 Å compared to the experi-
mental value of 2.533 Å �Table IX�. The density of the liquid
increases by 4% upon melting; however, the melting point
predicted by the T3 potential �
3000 K� is almost twice as

TABLE IX. Liquid Si: Density ���, first- �R1� and second-
neighbor �R2� peak distance from the radial distribution, average
coordination number �C1�, and average bond angle �
� for the bond-
angle distribution for liquid silicon from experiment and simulation
using the 2B-Si, mXB, and EDIP potentials.

Experiment 2B-Si mXB EDIPa,b

� �g cm−3� 2.533 2.17 2.29 2.255

R1 �Å� 2.46 2.41 2.41 2.46

C1 �atoms� 6.4�0.5 3.89 4.33 4.5
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bFrom Ref. 12.
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FIG. 7. �Color online� Bond-angle distributions of a-Si at
300 K. At the most probable angle, the topmost distribution was
obtained using the EDIP �pink� followed by the 2B-Si �green� and
the mXB potential �blue� distributions. The distributions have been
normalized by the total number of counts.
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FIG. 8. �Color online� Radial distribution functions for liquid Si.
In order from the top of the figure, distributions obtained at 1800 K
using the EDIP12 �pink solid�, at 3500 K using the mXB potential
�blue dashed�, at 3500 K using the 2B-Si �green solid� potential,
and from experiment91 �red dashed� at 1829 K are shown. These
data are normalized so that g���=1 and the curves are offset from
the experimental curve by 2, 4, and 6 units, respectively, on the y
axis for clarity.
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large as the experimentally determined value �1685 K�. In
addition, the number of neighbors found by integration of the
radial distribution function up to the first peak is 4.5, while
the experimentally determined number is 6.4.

The radial distribution functions for liquid silicon ob-
tained using 2B-Si potential, the mXB potential, the EDIP,12

and the experimentally determined function91 are shown in
Fig. 8 and other liquid data are summarized in Table IX.
Note, these distributions were obtained at different tempera-
tures�. The level of agreement between these functions and
the experimental data is surprising in view of the fact that
none of these potentials were fit to liquid-phase properties.
The width of the first peak generated with all the empirical
potentials is too narrow. The peak in the function produced
using the EDIP potential has the narrowest distribution. The
EDIP potential is able to do a reasonable job modeling the
melting temperature of silicon. It produces a value which is
20% lower than the experimental value while the other em-
pirical potentials, e.g., 2B-Si �3140 K� and mXB �2190 K�,
predict melting temperatures which are too large. Finally,
only the T3 potential correctly predicts the density of silicon
will increase upon melting. The EDIP, 2B-Si, and mXB po-
tentials all predict a slight decrease in the density upon melt-
ing �Table IX�.

The distribution of bond angles within liquid silicon is
another important quantity to examine �Fig. 9�. The EDIP,12

mXB, and the 2B-Si potentials all capture the bimodal shape
of the bond-angle distribution present in the ab initio MD
distribution.80 However, the most probable peak produced by
the three empirical potentials is shifted toward the tetrahedral
angle while the most probable peak is closer to 90° in the ab
initio MD distribution.

E. Elastic properties as a function of temperature of dc-Si and
a-Si

Elastic constants can be calculated from molecular dy-
namics simulations at finite temperature by the direct
method, which involves calculating elastic constants from a

stress-strain curve,92 and fluctuation methods, which make
use of ensemble averages of the fluctuations in either strain
or stress.32,93–99 For crystals with cubic symmetry, there are
only three independent elastic constants, C11, C12, and C44.
For isotropic materials, such as the a-Si structures examined
here, the number of independent elastic constants is reduced
to two, C11 and C12, where C44= �C11−C12� /2.100

Recently, the direct, stress-fluctuation and strain-
fluctuation methods were used to calculate the elastic con-
stants of diamond as a function of temperature.31 Each of
these methods has advantages and disadvantages.32 For ex-
ample, using the strain-fluctuation method for the elasticity
tensor requires the use of variable box-size MD simulations
and the simulations can be slow to converge.101,102 In con-
trast, the stress-fluctuation method for calculating the stress
and elasticity tensors can be implemented in the constant-
volume ensemble. A drawback of this method is that the
second derivative with respect to strain of the interatomic
potential must be evaluated which can be challenging for
multibody potentials. In a recent work, the first and second
derivatives of the second-generation REBO potential with
respect to strain were derived and equations that can be used
to obtain these derivatives for all angular-dependent poten-
tials were presented.32

The direct method in a constant-strain ensemble was used
to calculate elastic constants as a function of temperature
reported herein. For the elastic moduli of diamond-cubic sili-
con, the simulation cell is constructed such that the edge
vectors of the cell are parallel with an edge of the unit cell of
the diamond lattice, with �100� along x, �010� along y, and
�001� along z.31 To determine the elastic constants C11 and
C12, the simulation box is scaled along the x direction by a
factor of 1+e, where e is the compression ratio. For small
values of e , the system is under a strain of

�ij = �e 0 0

0 0 0

0 0 0
� + �ij , �11�

where �ij is the 3�3 identity matrix. This leads to the rela-
tionships for �xx and �yy +�zz given by Gao et al.,31 which
can be used to determine C11 and C12. In a constant-volume
simulation, the corresponding stresses, �xx, �yy, and �zz can
be found from the ensemble averages of the internal stress
tensor. We have recently shown that the internal stress tensor
can be calculated for multibody potentials.32

To determine C44 for cubic crystal structures, the crystal
must be rotated such that one side of the periodic simulation
cell corresponds to a �110� plane with two edges along �110�
directions and the third orthogonal direction along a �100�
direction. Thus, x� is along �110�, y� is along �1̄10�, and z�
=z is along the �001� direction, where the primes denote the
rotated reference frame. This is equivalent to a 45° rotation
of the crystal about the z axis. If a strain of 1+e is applied
along the x�= �110� direction, then the pressure on the �110�
plane P110 can be calculated in a constant-volume simulation
from �x�x�. The equation relating P110 to the three elastic
constants can then be used to obtain C44.
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FIG. 9. �Color online� Bond-angle distributions for liquid Si. In
order from the top of the figure for the peak near 109°, distributions
obtained using the 2B-Si �green�, the EDIP �pink�, and the mXB
potential �blue�. The distributions have been normalized by the total
number of “counts” and the temperatures are the same as in Fig. 8.
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When there are only two independent elastic constants, as
is the case with the amorphous or isotropic systems, C44 can
be calculated using C11 and C12. However, C44 can also be
obtained from the simulation and then used to determine the
degree of anisotropy in a system, which gives a measure of
the quality of amorphous structure. The anisotropy factor is
defined as

A = 1 −
C44

1
2 �C11 − C12�

, �12�

where C11, C12, and C44 are all determined directly from
simulation. When A equals 0, the system will be isotropic.
Unfortunately, the method described above for calculating
C44 fails for isotropic and amorphous systems because they
do not have the convenient axes of symmetry required for
rotations. In this case, an equivalent strain tensor and re-
solved stress must be found. In the reference frame of the
rotated, �110�-oriented system, the strain tensor can be writ-
ten in matrix form as

�ij� = �e 0 0

0 0 0

0 0 0
� + �ij . �13�

The strain tensor can be rotated back into the original �100�-
oriented reference frame by rotating by −45° about the z axis
using Euler’s rotation theorem.103

� = �z���z
T, �14�

where

�z = � cos��� sin��� 0

− sin��� cos��� 0

0 0 1
� , �15�

and superscript T is the matrix transpose. For a −45° rotation
about the z axis the equivalent strain in the original, unro-
tated reference frame is given by

�ij = �e/2 e/2 0

e/2 e/2 0

0 0 0
� + �ij . �16�

The stress on any plane in a body is given by P=n�, and the
stress normal to the plane is given as �N=nP, where n is the
unit vector of the plane defined by its crystallographic indi-
ces divided by the vector norm. For the �110� plane,

P110 = �N = 1
2 ��11 + 2�12 + �22� . �17�

Thus, the three elastic constants and the anisotropy factor
can be calculated by applying the appropriate strain to the
simulation box. First, C11 and C12 are determined. The re-
solved stress P110 is found via Eq. �17� using the internal
stress tensor and substituted into P110 that relates the three
elastic constants, which is then rearranged to solve for C44.
The nonorthogonal periodic boundary conditions which arise
from the application of the strain in Eq. �16� are handled
using the minimum image convention.104

The direct method requires that the simulations be con-
ducted in a canonical �NVT� ensemble. Because the system
volume is a function of temperature, this dependence must
be determined to ensure that all stresses calculated as a func-
tion of applied strain are relative to the zero-stress condition.
For this reason, a series of MD simulations using the
isothermal-isotension ensemble �TtN�96 were conducted.
During a simulation, the computational cell is allowed to
change shape and size and the shape of the simulation cell is
a dynamic variable.105 The simulation cell is constructed
from three time-dependent vectors a, b, and c. The matrix h
is formed from these three vectors such that h= �a ,b ,c�. A
technique suggested by Nosé and Klein is applied to main-
tain the symmetry of the h matrix, and thus prevents system
rotations.106 The simulations are performed with the thermo-
dynamic tension and external hydrostatic pressure set to
zero. In most of the simulations presented here, the simula-
tion system contains 1000 silicon atoms. Dynamic equations
are integrated using a fourth-order Gear predictor-corrector
algorithm with a constant time step size of 0.25 fs.107 Tem-
peratures are controlled using Nosé’s extended-system
method.108

The systems are equilibrated for a minimum of 200 ps.
The instantaneous values of the h matrix are averaged over
the course of the simulation to obtain an average box shape
h0. The h0 matrix indicates that the diamond-cubic silicon
structures generated with both the 2B-Si and the mXB po-
tentials remain orthogonal and cubic after equilibration. A
small amount of nonorthogonality is introduced into the a-Si
samples after equilibration. The average volume, calculated
by taking the determinant of the h0 matrix is plotted as a
function of temperature in Fig. 10. The volume has been
normalized by each system’s volume at zero Kelvin. The
volume at zero Kelvin was determined by minimizing the
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FIG. 10. Volume change as a function of temperature for
diamond-cubic silicon �a� and a-Si �b� as calculated with the 2B-Si
�squares� and mXB �open diamonds� potentials. In both plots, the
solid line is the experimentally determined volume change for
diamond-cubic silicon replotted from Ref. 109.
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potential energy by adjusting the simulation box size. The
figure shows results for diamond-cubic silicon �Fig. 10�a��
and a-Si �Fig. 10�b�� calculated with both the 2B-Si and the
mXB potentials. For comparison, experimental data for
diamond-cubic silicon are also shown.109 The 2B-Si potential
predicts that volume expansion increases almost linearly
with temperature for both diamond cubic and a-Si. This
trend agrees qualitatively with the experimentally deter-
mined values. However, the experimentally determined val-
ues do not show as strong of a dependence on temperature.

An average volumetric thermal expansion coefficient was
determined by taking the slope of the relative volume �V /V0�
versus temperature over the temperature range of
50–1100 K. The experimentally determined value for
diamond-cubic silicon is 8.2�10−6 K−1 compared to a value
of 2.7�10−5 K−1 and 3.0�10−5 K−1 for the 2B-Si diamond
cubic and a-Si, respectively. The volume calculated using the
mXB potential at first appears to increase and then begins to
contract unrealistically as temperature continues to increase
and no attempt was made to approximate a thermal expan-
sion coefficient.

The elastic constants of diamond-cubic silicon as a func-
tion of temperature calculated with the 2B-Si potential are
shown in Figs. 11 and 12. For comparison, values calculated
using the mXB potential and the experimental values are also
shown. The bulk modulus calculated with the 2B-Si potential
decreases with increasing temperature and is in qualitative
and reasonable quantitative agreement with the experimental
bulk modulus. The mXB potential is in good agreement at
low temperatures �
300 K� but begins to increase in a non-
physical way above 300 K. Both C11 and C44 decrease
slightly with increasing temperature and this trend is quali-
tatively reproduced by the 2B-Si potential. However, the cal-
culated C11 values decrease more markedly than the experi-
mentally determined values with the difference between the
two values becoming larger as the temperature is increased.
The “fast softening” of the elastic constants C11 and C44 with
temperature predicted by MD simulations has been previ-
ously observed for diamond31 and is a direct consequence of

the inability of classical MD simulations to accurately pre-
dict thermal expansion. These results are explained by Gru-
neisen’s law, which states that the higher the thermal expan-
sion coefficient, the faster the elastic softening.110

Because the value of C44 calculated with the 2B-Si poten-
tial at 0 K is larger than the experimental value, the values of
C44 calculated with the 2B-Si potential approach the experi-
mental values as the temperature is increased. In contrast, the
mXB potential predicts that both C11 and C44 are fairly in-
sensitive to temperature. In addition, the values of these elas-
tic constants calculated with the 2B-Si potential are much
closer to the experimentally determined values. The experi-
mentally determined values of C12 decrease slightly over the
temperature range considered. The 2B-Si potential values
show a slight increase at small temperatures and then are
fairly insensitive to the changes in temperature. Coinciden-
tally, with the 2B-Si potential, the fast softening of C11 and
the increase in C12 combine to give the correct temperature
response for the bulk modulus shown in Fig. 11. The C12
values calculated using the mXB potential show an initial
decrease with increasing temperature and then begin to rise
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FIG. 11. Bulk modulus calculated for 2B-Si �squares� and mXB
�open diamonds� diamond-cubic silicon. The error bars indicate
high and low values. The solid line represents the experimental
values.111 For cubic systems the bulk modulus is given by
B= 1
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cate high and low values. The solid line represents the experimental
values.111

ELASTIC CONSTANTS OF SILICON MATERIALS… PHYSICAL REVIEW B 77, 115209 �2008�

115209-15



at temperatures above 300 K. These values are much larger
than the experimentally determined values or the values cal-
culated with the 2B-Si potential.

The elastic constants of the amorphous silicon structures
generated as described in Sec. III C �shown in Fig. 5� have
been calculated as a function of temperature. The results are
plotted in Fig. 13. Because mechanical property data for a-Si
is somewhat limited, the experimental values for diamond-
cubic silicon are given as a point of reference. It is expected
that the elastic constants for diamond-cubic silicon and
amorphous silicon should be similar in magnitude because
both structures are largely tetrahedral. For the a-Si generated
with the 2B-Si potential, both C12 and C44 are relatively in-
dependent of temperature while C11 decreases slightly. The
anisotropy factor calculated for the 2B-Si a-Si is relatively
small, ranging between −0.001 and 0.07, and is independent
of temperature suggesting that the amorphous structure is
fairly isotropic.

IV. SUMMARY

In this work, parameters for Si-Si interactions based on
the second-generation REBO formalism �2B-Si� are pre-
sented. There are four reasons why we chose to develop a
parameter set for Si-Si interactions within the second-
generation REBO formalism rather than use one of the many
existing Si empirical potentials. First, the REBO potential
has been used extensively to model a wide range of pro-
cesses. Parametrizations of many atom types exist. This work
increases the number of atomic interactions that have been
parametrized for this potential formalism. Second, the
second-generation REBO does a reasonable job reproducing
the zero-Kelvin elastic constants of diamond and graphite.
This is a result of the way in which the angular function was
fit. By using this same procedure, the elastic constants of
diamond-cubic silicon were fit. Most empirical potentials for
Si, with the exception of the EDIP, T3, and BOP, are unable
to reproduce the zero-Kelvin elastic constants.19,29 Third, the
updated form of the angular part of the second-generation
REBO for C-C interactions also produces the correct depen-
dence of the elastic constants and bulk modulus of diamond
with temperature31 and improved the ability of the potential
to reproduce the correct defect formation energies.30 By ex-
tension, it seemed likely that the same would be true for a
Si-Si parametrization within this formalism. Finally, because
our ultimate goal is to model chemical reactions in C-, Si-,
and H-containing systems, a bond-order potential that can
model these atoms as well as combinations of these atoms is
needed. Because C-C and C-H parameters have already been
published, our parametrization of Si-Si interactions is an-
other step toward having all the needed parameters to model
C-, Si-, and H-containing systems within the second-
generation formalism.

This new Si parametrization was used to calculate a wide
range of values for crystalline silicon structures, amorphous
silicon structures, and liquid silicon. Because we are ulti-
mately interested in a potential that can model C, Si, and H,
we have compared our new parametrization for Si with the
mXB potential. Because the EDIP for Si is able to reproduce
the zero-Kelvin elastic constants of diamond-cubic silicon,
and because it produces a reasonable amorphous structure
from the melt, we included the previously published values
for the EDIP in this work for comparison. Available data for
the recently published BOP for Si are also included for com-
parison because it predicts the correct Cauchy pressure for
diamond-cubic silicon. These potentials are among the few
that are able to model the elastic properties of diamond-cubic
silicon correctly. Extensive comparisons of most other em-
pirical silicon potentials have been published previously15,29

and are, therefore, not included here.
The ability of the potential to model a realistic amorphous

phase is important for the simulation of many C-, Si-, and
H-containing systems, such as Si-doped diamondlike carbon.
The 2B-Si is able to reproduce amorphous silicon properties
which are in good agreement with experimentally deter-
mined properties and those from ab initio MD studies. The
positions of the peaks in the pair-correlation function are in
very good agreement with the experimentally determined
values. The amorphous silicon produced from the melt is
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FIG. 13. Elastic constants calculated for 2B-Si �squares� and
mXB �diamonds� for amorphous silicon. The error bars indicate
high and low values. The solid line represents the experimental
values for diamond-cubic silicon.111
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dominated by tetrahedrally coordinated silicon as is the case
in the samples produced with ab initio MD. In addition, a
small number of T3 and T5 defects are found in the amor-
phous silicon. This also agrees with the findings of ab initio
MD simulations and TB. The structures obtained with the
2B-Si are slightly better than those obtained using the mXB
potential. For instance, the elastic constants for the amor-
phous structures are too low as was the case with the crys-
talline silicon structures. Moreover, no T3 defects were ap-
parent in the structures obtained with mXB potential. The
radial and bond-angle distributions obtained using the EDIP
are in good agreement with experiment although no data on
the elastic constants or defects were published. Lastly, data
for the amorphous phase produced using the BOP are not
available.

While the goals of this work, producing a Si-Si potential
based on the second-generation REBO formalism that could
model the elastic properties in crystalline and amorphous
solids, were met, for completeness a wide variety of other
materials properties were also calculated. For example, the
cohesive energies, defect relaxation energies, lattice param-
eters, and bulk moduli for a wide range of crystalline Si
structures, including structures that were not used in the fit-
ting procedure, are also reproduced well by this new param-
etrization. With the exception of C44, the zero-Kelvin elastic
constants of diamond-cubic silicon are within 3% of the ex-
perimentally determined values. The 2B-Si potential does
quite well reproducing energies of the ideal and relaxed
�100� �1�1� and �2�1� surfaces. In addition, it is also able
to reproduce the energies of the ideal and relaxed �111� �1
�1� surfaces. However, it incorrectly predicts that adatom
structures on the �111� surface are less stable than the ideal
�111� surface. This problem is common among empirical po-
tentials for silicon. In fact, only the T2 potential, examined
by Balamane et al.,29 and the mXB potential correctly pre-
dict that the adatom structures examined here are more stable
than the ideal �111� �1�1� surface. Despite this, neither of
those potentials correctly predicts the order of stability ob-
tained with DFT.

Examination of structure of liquid silicon provides an in-
teresting test of the transferability of the 2B-Si potential be-
cause it was not fit to any properties of the liquid �or the
amorphous� phase. The 2B-Si potential is able to reproduce
the experimentally determined pair-correlation function. In
addition, the bimodal shape of the bond-angle distribution

obtained in ab initio MD80 simulations is also reproduced.
However, in the distributions obtained with both the mXB
and the 2B-Si, the most probable angle is shifted away from
90° closer to the tetrahedral angle. In addition, the melting
point of the liquid is approximately two times larger than the
melting point of silicon. The BOP reproduces the melting
point of Si; however, data for the structure of the liquid
phase were not reported.

Despite the various functional forms and fitting param-
eters for existing Si potentials, the discovery of one universal
function form or parameter set that accurately describes all
possible silicon structures and phases has remained elusive.
Thus, a potential energy function should be chosen based on
the processes one wishes to simulate. For example, there are
potentials that are able to model the structure and energetics
of silicon clusters or the properties of liquid silicon that are
unable to simultaneously model bulk properties of crystalline
and amorphous silicon. Some potential energy functions are
able to reproduce the melting temperature of Si but do not
predict the correct density of the liquid. The parametrization
of the second-generation REBO for Si presented here is able
to model a wide range of properties of both crystalline and
amorphous Si. It is among two potentials that are able to
reproduce a reasonable amorphous structure by melting Si.
Like all empirical potentials published to date, it cannot re-
produce all the properties for all phases of Si. Based on the
analysis provided herein, this parametrization performed as
well, or better, than previously published Si potentials in
reproducing a wide range of properties in crystalline, amor-
phous, and liquid silicon. Current work is focused on the
development of Si-C and Si-H parameters within this formal-
ism. This will allow for reactive processes in a broad range
of Si-, C-, and H-containing materials to be simulated.
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